We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Adaptive minimax predictive density for sparse Poisson models

Formal Metadata

Title
Adaptive minimax predictive density for sparse Poisson models
Title of Series
Number of Parts
20
Author
Contributors
License
CC Attribution - NonCommercial - NoDerivatives 4.0 International:
You are free to use, copy, distribute and transmit the work or content in unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
We discuss predictive density for Poisson sequence models under sparsity constraints. Sparsity in count data implies situations where there exists an overabundance of zeros or near-zero counts. We investigate the exact asymptotic minimax Kullback--Leibler risks in sparse and quasi-sparse Poisson sequence models. We also construct a class of Bayes predictive densities that attain exact asymptotic minimaxity without the knowledge of true sparsity level. Our construction involves the following techniques: (i) using spike-and-slab prior with an improper prior; (ii) calibrating the scaling of improper priors from the predictive viewpoint; (iii) plugging a convenient estimator into the hyperparameter. For application, we also discuss the performance of the proposed Bayes predictive densities in settings where current observations are missing completely at random. The simulation studies as well as applications to real data demonstrate the efficiency of the proposed Bayes predictive densities. This talk is based on the joint work with Fumiyasu Komaki (University of Tokyo) and Ryoya Kaneko (University of Tokyo).