We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Some applications of MCMC perturbations with high-dimensional shrinkage priors

Formal Metadata

Title
Some applications of MCMC perturbations with high-dimensional shrinkage priors
Title of Series
Number of Parts
20
Author
License
CC Attribution - NonCommercial - NoDerivatives 4.0 International:
You are free to use, copy, distribute and transmit the work or content in unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
Markov chain Monte Carlo (MCMC) algorithms are commonly used to fit complex hierarchical models to data. In this talk, we shall discuss some recent efforts to scale up Bayesian computation in high-dimensional and shape-constrained regression problems. The common underlying theme is to perturb the transition kernel of an exact MCMC algorithm to ease the computational cost per step while maintaining accuracy. The effects of such approximations are studied theoretically, and new algorithms are developed for the horseshoe prior and constrained Gaussian process priors in various applications.