We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Global-Local Shrinkage Priors for High Dimensional Multivariate Regression

Formal Metadata

Title
Global-Local Shrinkage Priors for High Dimensional Multivariate Regression
Alternative Title
Bayesian High Dimensional Multivariate Regression with Shrinkage Priors
Title of Series
Number of Parts
20
Author
License
CC Attribution - NonCommercial - NoDerivatives 4.0 International:
You are free to use, copy, distribute and transmit the work or content in unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
We consider sparse Bayesian estimation in the classical multivariate linear regression model with p regressors and q response variables. In univariate Bayesian linear regression with a single response y, shrinkage priors which can be expressed as scale-mixtures of normal densities are a popular approach for obtaining sparse estimates of the coefficients. In this paper, we extend the use of these priors to the multivariate case to estimate a p times q coefficients matrix B. Our method can be used for any sample size n and any dimension p. Moreover, we show that the posterior distribution can consistently estimate B even when p grows at nearly exponential rate with the sample size n. Concentration inequalities are proved and our results are illustrated through simulation and data analysis.