We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Nonparametric maximum likelihood methods for binary response models with random coefficients

Formal Metadata

Title
Nonparametric maximum likelihood methods for binary response models with random coefficients
Title of Series
Number of Parts
20
Author
License
CC Attribution - NonCommercial - NoDerivatives 4.0 International:
You are free to use, copy, distribute and transmit the work or content in unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
Single index linear models for binary response with random coefficients have been extensively employed in many settings under various parametric specifications of the distribution of the random coefficients. Nonparametric maximum likelihood estimation (NPMLE) as proposed by Kiefer and Wolfowitz (1956) in contrast, has received less attention in applied work due primarily to computational difficulties. We propose a new approach to computation of NPMLEs for binary response models that significantly increase their computational tractability thereby facilitating greater flexibility in applications. Our approach, which relies on recent developments involving the geometry of hyperplane arrangements by Rada and Černý (2018), is contrasted with the recently proposed deconvolution method of Gautier and Kitamura (2013).