We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Localized radial basis function methods for PDEs in thin volumes

Formal Metadata

Title
Localized radial basis function methods for PDEs in thin volumes
Title of Series
Number of Parts
19
Author
License
CC Attribution - NonCommercial - NoDerivatives 4.0 International:
You are free to use, copy, distribute and transmit the work or content in unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
This work was initiated because we wanted to simulate the biomechanics of the respiratory system. The main muscle that drives the respiration is the diaphragm which has an aspect ratio of approximately 1:100 of the length and thickness scales. There are several practical challenges to deal with. Creating a smooth representation of the geometry extracted from medical images; generating anisotropic scattered nodes within the thin volume; applying physically relevant boundary conditions; and solving the (non-linear) elasticity equations. In this talk, I will show results for the geometry representation as well as analysis of and results for a simplified anisotropic linear elasticity problem.