We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

A multiscale method for parabolic problems

Formal Metadata

Title
A multiscale method for parabolic problems
Alternative Title
A multiscale method for parabolic equations
Title of Series
Number of Parts
19
Author
License
CC Attribution - NonCommercial - NoDerivatives 4.0 International:
You are free to use, copy, distribute and transmit the work or content in unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
We study numerical solutions for parabolic equations with highly varying (multiscale) coefficients. Such equations typically appear when modelling heat diffusion in heterogeneous media like composite materials. For these problems classical polynomial based finite element methods fail to approximate the solution well unless the mesh width resolves the variations in the data. This leads to issues with computational cost and available memory, which calls for new approaches and methods. In this talk I will present a multiscale method based on localized orthogonal decomposition, first introduced by M\r{a}lqvist and Peterseim (2014). The focus will be on how to generalize this method to time dependent problems of parabolic type.