We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

You must have n qubits or more to win: efficient self-tests for high-dimensional entanglement

Formal Metadata

Title
You must have n qubits or more to win: efficient self-tests for high-dimensional entanglement
Title of Series
Number of Parts
14
Author
License
CC Attribution - NonCommercial - NoDerivatives 4.0 International:
You are free to use, copy, distribute and transmit the work or content in unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
How much, and what sort of entanglement is needed to win a non-local game? In many ways this is the central question in the study of non-local games, and as we've seen in the previous talks, a full understanding of this question could resolve such conundrums as Tsirelson's problem, the complexity of MIP*, and Connes' embedding conjecture. One approach to this question which has proved fruitful is to design *self-tests*: games for which players who wish to play almost optimally must share a quantum state that is close to a specific entangled state. In this talk I'll present a self-test for high-dimensional maximally entangled states that is *efficient* and *robust*: to test n qubits of entanglement requires a game of poly(n) size, and the test gives guarantees even for strategies that are constant far from optimal. These properties are motivated by the complexity-theoretic goal of showing that the entangled value of a nonlocal game is strictly harder to approximate than the classical value. Based on joint work with Thomas Vidick.