We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Tilting bundles, BGG-correspondence, higher preprojective algebras and the Serre functor

Formal Metadata

Title
Tilting bundles, BGG-correspondence, higher preprojective algebras and the Serre functor
Title of Series
Number of Parts
16
Author
License
CC Attribution - NonCommercial - NoDerivatives 4.0 International:
You are free to use, copy, distribute and transmit the work or content in unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
We report on a work jointly started with Ragnar Buchweitz about the pull back of a tilting bundle T to the total space of the canonical line bundle Y. Let X be an algebraic variety with a tilting bundle T, then we have a criterion when its pull back to Y is also a tilting bundle. This is closely related to my previous work on distinguished tilting sequences and generalizes the results therein. Morover, we can compute the endomorphism ring of the pull back tilting bundle as the higher preprojective algebra. This leads to a geometric construction of those algebras. The construction needs tilting bundles T with endomorphism algebra of global dimension dimX. In this talk we consider several examples for surfaces and compute the possible global dimensions of A.