We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Transient compartmentalization and its associated error thresholds

Formal Metadata

Title
Transient compartmentalization and its associated error thresholds
Title of Series
Number of Parts
16
Author
License
CC Attribution - NonCommercial - NoDerivatives 4.0 International:
You are free to use, copy, distribute and transmit the work or content in unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
A recently proposed mechanism suggests that transient compartmentalization could have preceded cell division in prebiotic scenarios. Here, we study various classes of transient compartmentalization dynamics. We show that two regimes are possible: In a diffusion-limited regime (e.g. simple autocatalysis), a large noise is generated at the population level due to asynchronous growth. In contrast, in a replication-limited regime with many steps (e.g. polymerization), a low noise is generated at the population level. Since strong noise will yield many unviable population compositions, polymerization can present a strong fitness advantage. For deterministic growth dynamics, we introduce mutations that turn functional replicators into parasites. This can either lead to coexistence or parasite dominance, and we derive the phase boundary separating these two phases as a function of relative growth, inoculation size and mutation rate. We show that transient compartmentalization allows coexistence beyond the classical error threshold.