We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

From combinatorial zeolites to geometric realizations

Formal Metadata

Title
From combinatorial zeolites to geometric realizations
Alternative Title
Zeolites and tetrahedral packings
Title of Series
Number of Parts
12
Author
License
CC Attribution - NonCommercial - NoDerivatives 4.0 International:
You are free to use, copy, distribute and transmit the work or content in unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
Zeolites (zeo = boil; lithos = stone) are microporous, aluminosilicate minerals commonly used as commercial adsorbents and catalysts. In 1973 the book "Zeolite molecular sieves: structure, chemistry and use" (771pp) by Donald W. Breck appeared. At that time 27 zeolite framework types were known. In 2007, the 6'th edition of the Atlas of Zeolite Framework Types describes 176 known distinct approved types. Zeolites occur naturally but are also produced industrially on a large scale. Combinatorially, zeolites are line graphs of 4-regular graphs and may be finite. However, it is not always possible to realize a combinatorial zeolite as a unit distance graph in 3-space. Mike Winkler found a saturated tetrahedral packing consisting of only 12 tetrahedra. It is not known yet if the packing is rigid. A 16 vertex model was shown to have at least two degrees of freedom. We try to give an overview of recent results and open problems.