We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Dynamical relativistic liquid bodies: local-in-time existence and uniqueness

Formal Metadata

Title
Dynamical relativistic liquid bodies: local-in-time existence and uniqueness
Title of Series
Number of Parts
13
Author
License
CC Attribution - NonCommercial - NoDerivatives 4.0 International:
You are free to use, copy, distribute and transmit the work or content in unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
In this talk, I will discuss a new approach to establishing the well-posedness of the relativistic Euler equations for liquid bodies in vacuum. The approach is based on a wave formulation of the relativistic Euler equations that consists of a system of non-linear wave equations in divergence form together with a combination of acoustic and Dirichlet boundary conditions. The equations and boundary conditions of the wave formulation differs from the standard one by terms proportional to certain constraints, and one of the main technical problems to overcome is to show that these constraints propagate, which is necessary to ensure that solutions of the wave formulation determine solutions to the Euler equations with vacuum boundary conditions. During the talk, I will describe the derivation of the wave equation and boundary conditions, the origin of the constraints, and how one shows that the constraints propagate. Time permitting, I will also discuss how energy estimates can be obtained from this new formulation paying particular attention to the role of the acoustic boundary conditions.