We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Sublinear Coherence Distillation (using Time-Translation Invariant Operations)

Formal Metadata

Title
Sublinear Coherence Distillation (using Time-Translation Invariant Operations)
Alternative Title
Sublinear Coherence distillation and a no-broadcasting theorem for coherence and asymmetry
Title of Series
Number of Parts
20
Author
License
CC Attribution - NonCommercial - NoDerivatives 4.0 International:
You are free to use, copy, distribute and transmit the work or content in unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
In this talk I discuss coherence distillation under Time translation Invariant operations. I show that although for a generic mixed state the distillation rate is zero, it is still possible to distill a sub-linear number of a pure coherent state, with fidelity approaching one, provided that we can consume asymptotically many copies of the mixed state. Furthermore, for a generic mixed input state, there is a tradeoff between the maximum achievable yield and the fidelity with pure coherent states. Interestingly, it turns out that Petz-Renyi relative entropy for alpha=2 gives a tight bound on the maximum achievable fidelity. Furthermore, coherence distillation provides an operational explanation for the violation of the monotonicity of Petz-Renyi relative entropy for the parameter range alpha>2. Finally, I talk about the limitations of measure-and-prepare (entanglement-breaking) processes for coherence distillation. If time allows, I also briefly discuss a new no-broadcasting theorem for coherence and asymmetry. The no-go theorem states that if two initially uncorrelated systems interact by symmetric dynamics and asymmetry is created at one subsystem, then the asymmetry of the other subsystem must be reduced. I also present a quantitative relation describing the tradeoff between the subsystems.