We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Convergence rates for quantum evolution & entropic continuity bounds in infinite dimensions.

Formal Metadata

Title
Convergence rates for quantum evolution & entropic continuity bounds in infinite dimensions.
Title of Series
Number of Parts
20
Author
License
CC Attribution - NonCommercial - NoDerivatives 4.0 International:
You are free to use, copy, distribute and transmit the work or content in unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
How fast do infinite-dimensional quantum systems evolve? Do entropies of infinite-dimensional quantum systems satisfy continuity bounds? If so, what are the corresponding convergence rates? These are the questions that will addressed in this talk. By extending the concept of energy-constrained diamond norms, we obtain continuity bounds on the dynamics of both closed and open quantum systems in infinite-dimensions, which are stronger than previously known bounds. Our results have interesting applications including quantum speed limits, attenuator and amplifier channels, the quantum Boltzmann equation, and quantum Brownian motion. We also obtain explicit log-Lipschitz continuity bounds for entropies of infinite-dimensional quantum systems, and classical capacities of infinite-dimensional quantum channels under energy-constraints. These bounds are determined by the high energy spectrum of the underlying Hamiltonian and can be evaluated using Weyl’s law.