We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

How effectively can a molecular switch switch? A bound from thermodynamic resource theories

00:00

Formal Metadata

Title
How effectively can a molecular switch switch? A bound from thermodynamic resource theories
Title of Series
Number of Parts
20
Author
License
CC Attribution - NonCommercial - NoDerivatives 4.0 International:
You are free to use, copy, distribute and transmit the work or content in unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
Resource theorists have racked up scores of theorems over the past decade. But can these abstract theories inform science beyond quantum information and quantum thermodynamics? Can resource theories answer other scientists’ questions about specific systems in the real physical world? We argue affirmatively, illustrating with photoisomers, or molecular switches. Photoisomers surface across nature and technologies, from our eyes to solar-fuel cells. How effectively can these switches switch? This question defies standard tools, because photoisomers are small, quantum and far from equilibrium. We answer by modeling a photoisomer within a thermodynamic resource theory. Using thermomajorization, we upper-bound the switching probability. Then, we compare the bound with detailed balance and Lindbladian evolution. Thermomajorization constrains the yield tightly if a laser barely excites the molecule, such that thermal fluctuations drive switching. We also quantify the coherence in the molecule’s postswitching electronic state. Electronic coherence cannot boost the yield in the absence of extra resources, we argue, because modes of coherence transform independently via thermal operations. This work illustrates how thermodynamic resource theories can illuminate nature, experiments, and synthetics. This work appears in "Fundamental limitations on photoisomerization from thermodynamic resource theories" and was undertaken with David Limmer.