We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Resource theories of quantum channels

Formal Metadata

Title
Resource theories of quantum channels
Alternative Title
Resource theories of quantum channels and the universal role of resource erasure
Title of Series
Number of Parts
20
Author
License
CC Attribution - NonCommercial - NoDerivatives 4.0 International:
You are free to use, copy, distribute and transmit the work or content in unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
We initiate the systematic study of resource theories of quantum channels, i.e. of the dynamics that quantum systems undergo by completely positive maps, in abstracto: Resources are in principle all maps from one quantum system to another, but some maps are deemed free. The free maps are supposed to satisfy certain axioms, among them closure under tensor products, under composition and freeness of the identity map (the latter two say that the free maps form a monoid). The free maps act on the resources simply by tensor product and composition. This generalizes the much-studied resource theories of quantum states, and abolishes the distinction between resources (states) and the free maps, which act on the former, leaving only maps, divided into resource-full and resource-free ones. We discuss the axiomatic framework of quantifying channel resources, and show two general methods of constructing resource monotones of channels. Furthermore, we show that under mild regularity conditions, each resource theory of quantum channels has a distinguished monotone, the robustness (and its smoothed version), generalizing the analogous concept in resource theories of states. We give an operational interpretation of the log-robustness as the amount of heat dissipation (randomness) required for resource erasure by random reversible free maps, valid in broad classes of resource theories of quantum channels. Technically, this is based on an abstract version of the recent convex-split lemma, extended from its original domain of quantum states to ordered vector spaces with sufficiently well-behaved base norms (which includes the case of quantum channels with diamond norm or variants thereof). Finally, we remark on several key issues concerning the asymptotic theory.