We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

The Jones-Krushkal polynomial and minimal diagrams of surface links

Formal Metadata

Title
The Jones-Krushkal polynomial and minimal diagrams of surface links
Title of Series
Number of Parts
17
Author
License
CC Attribution - NonCommercial - NoDerivatives 4.0 International:
You are free to use, copy, distribute and transmit the work or content in unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
We prove an analogue of the Kauffman-Murasugi-Thistlethwaite theorem for alternating links in surfaces. It states that any reduced alternating diagram of a link in a thickened surface has minimal crossing number, and any two reduced alternating diagrams of the same link have the same writhe. The proof holds more generally for links admitting adequate diagrams and the key ingredient is a two-variable generalization of the Jones polynomial for surface links defined by Krushkal. This result extends the first and second Tait conjectures to alternating links in thickened surfaces and also to alternating virtual links.