We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

0-concordance of surface knots and Alexander ideals

Formal Metadata

Title
0-concordance of surface knots and Alexander ideals
Title of Series
Number of Parts
17
Author
License
CC Attribution - NonCommercial - NoDerivatives 4.0 International:
You are free to use, copy, distribute and transmit the work or content in unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
Paul Melvin proved that 0-concordant 2-knots have diffeomorphic Gluck twists, but until recently there were no known proofs that there is more than one 0-concordance class. Now Sunukjian and Dai-Miller have found many examples using Heegaard Floer technology applied to the Seifert 3-manifolds which the 2-knots bound. In this talk we give another proof using Alexander ideals. The main theorem is that the Alexander ideal induces a homomorphism from the 0-concordance monoid of 2-knots to the ideal class monoid of Z[t,t−1]. A corollary is that any 2-knot with nonprincipal Alexander ideal cannot be 0-slice, and moreover has no inverse in the 0-concordance monoid. This is the first proof that the monoid is not a group, and gives another proof of the existence of infinitely many linearly independent 0-concordance classes. These techniques also apply to higher genus surfaces, where we give the first results on 0-concordance. Lastly, we show that under a mild condition on the knot group, the peripheral subgroup of a knotted surface is also a 0-concordance invariant.