We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Complexity of Gröbner bases computations and applications to cryptography - lecture 2

Formal Metadata

Title
Complexity of Gröbner bases computations and applications to cryptography - lecture 2
Title of Series
Number of Parts
8
Author
Contributors
License
CC Attribution - NonCommercial - NoDerivatives 2.0 Generic:
You are free to use, copy, distribute and transmit the work or content in unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
I will start from reviewing Gröbner bases and their connection to polynomial system solving. The problem of solving a polynomial system of equations over a finite field has relevant applications to cryptography and coding theory. For many of these applications, being able to estimate the complexity of computing a Gröbner basis is crucial. With these applications in mind, I will review linear-algebra based algorithms, which are currently the most efficient algorithms available to compute Gröbner bases. I will define and compare several invariants, that were introduced with the goal of providing an estimate on the complexity of computing a Gröbner basis, including the solving degree, the degree of regularity, and the last fall degree. Concrete examples will complement the theoretical discussion.
Keywords