We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Topics in structured linear algebra - lecture 1

Formal Metadata

Title
Topics in structured linear algebra - lecture 1
Title of Series
Number of Parts
8
Author
Contributors
License
CC Attribution - NonCommercial - NoDerivatives 2.0 Generic:
You are free to use, copy, distribute and transmit the work or content in unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
Structure is a fundamental concept in linear algebra: matrices arising from applications often inherit a special form from the original problem, and this special form can be analysed and exploited to design efficient algorithms. In this short course we will present some examples of matrix structure and related applications. Here we are interested in data-sparse structure, that is, structure that allows us to represent an n × n matrix using only O(n) parameters. One notable example is provided by quasi separable matrices, a class of (generally dense) rank-structured matrices where off-diagonal blocks have low rank. We will give an overview of the properties of these structured classes and present a few examples of how algorithms that perform basic tasks - e.g., solving linear systems, computing eigenvalues, approximating matrix functions - can be tailored to specific structures.
Keywords