We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Approximation and learning with tree tensor networks - lecture 1

Formal Metadata

Title
Approximation and learning with tree tensor networks - lecture 1
Title of Series
Number of Parts
9
Author
Contributors
License
CC Attribution - NonCommercial - NoDerivatives 2.0 Generic:
You are free to use, copy, distribute and transmit the work or content in unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
Many problems in computational and data science require the approximation of high-dimensional functions. Examples of such problems can be found in physics, stochastic analysis, statistics, machine learning or uncertainty quantification. The approximation of high-dimensional functions requires the introduction of approximation tools that capture specific features of these functions. In this lecture, we will give an introduction to tree tensor networks (TNs), or tree-based tensor formats. In part I, we will present some general notions about tensors, tensor ranks, tensor formats and tensorization of vectors and functions. Then in part II, we will introduce approximation tools based on TNs, present results on the approximation power (or expressivity) of TNs and discuss the role of tensorization and architecture of TNs. Finally in part III, we will present algorithms for computing with TNs. This includes algorithms for tensor truncation, for the solution of optimization problems, for learning functions from samples...
Keywords