We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Some asymptotic results about American options and volativity

Formal Metadata

Title
Some asymptotic results about American options and volativity
Title of Series
Number of Parts
31
Author
Contributors
License
CC Attribution - NonCommercial - NoDerivatives 2.0 Generic:
You are free to use, copy, distribute and transmit the work or content in unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
The valuation of American options (a widespread type of financial contract) requires the numerical solution of an optimal stopping problem. Numerical methods for such problems have been widely investigated. Monte-Carlo methods are based on the implementation of dynamic programming principles coupled with regression techniques. In lower dimension, one can choose to tackle the related free boundary PDE with deterministic schemes. Pricing of American options will therefore be inevitably heavier than the one of European options, which only requires the computation of a (linear) expectation. The calibration (fitting) of a stochastic model to market quotes for American options is therefore an a priori demanding task. Yet, often this cannot be avoided: on exchange markets one is typically provided only with market quotes for American options on single stocks (as opposed to large stock indexes - e.g. S&P500 - for which large amounts of liquid European options are typically available). In this talk, we show how one can derive (approximate, but accurate enough) explicit formulas - therefore replacing other numerical methods, at least in a low-dimensional case - based on asymptotic calculus for diffusions. More precisely: based on a suitable representation of the PDE free boundary, we derive an approximation of this boundary close to final time that refines the expansions known so far in the literature. Via the early premium formula, this allows to derive semi-closed expressions for the price of the American put/call. The final product is a calibration recipe of a Dupire's local volatility to American option data. Based on joint work with Pierre Henry-Labordère.