We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Metamodels for uncertainty quantification and reliability analysis

Formal Metadata

Title
Metamodels for uncertainty quantification and reliability analysis
Title of Series
Number of Parts
31
Author
Contributors
License
CC Attribution - NonCommercial - NoDerivatives 2.0 Generic:
You are free to use, copy, distribute and transmit the work or content in unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
Uncertainty quantification (UQ) in the context of engineering applications aims aims at quantifying the effects of uncertainty in the input parameters of complex models on their output responses. Due to the increased availability of computational power and advanced modelling techniques, current simulation tools can provide unprecedented insight in the behaviour of complex systems. However, the associated computational costs have also increased significantly, often hindering the applicability of standard UQ techniques based on Monte-Carlo sampling. To overcome this limitation, metamodels (also referred to as surrogate models) have become a staple tool in the Engineering UQ community. This lecture will introduce a general framework for dealing with uncertainty in the presence of expensive computational models, in particular for reliability analysis (also known as rare event estimation). Reliability analysis focuses on the tail behaviour of a stochastic model response, so as to compute the probability of exceedance of a given performance measure, that would result in a critical failure of the system under study. Classical approximation-based techniques, as well as their modern metamodel-based counter-parts will be introduced.