We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Theory of approximation of high-dimensional functions - lecture 2

Formal Metadata

Title
Theory of approximation of high-dimensional functions - lecture 2
Title of Series
Number of Parts
9
Author
Contributors
License
CC Attribution - NonCommercial - NoDerivatives 2.0 Generic:
You are free to use, copy, distribute and transmit the work or content in unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
An ubiquitous problem in applied science is the recovery of physical phenomenons, represented by multivariate functions, from uncomplete measurements. These measurements typically have the form of pointwise data, but could also be obtained by linear functional. Most often, recovery techniques are based on some form of approximation by finite dimensional space that should accurately capture the unknown multivariate function. The first part of the course will review fundamental tools from approximation theory that describe how well relevant classes of multivariate functions can be described by such finite dimensional spaces. The notion of (linear or nonlinear) n-width will be developped, in relation with reduced modeling strategies that allow to construct near-optimal approximation spaces for classes of parametrized PDE's. Functions of many variables that are subject to the curse of dimensionality, will also be discussed. The second part of the course will review two recovery strategies from uncomplete measurements: weighted least-squares and parametrized background data-weak methods. An emphasis will be put on the derivation of sample distributions of minimal size for ensuring optimal convergence estimates.