We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Automatic thresholding method for the wake detection – comparison of the methods

Formal Metadata

Title
Automatic thresholding method for the wake detection – comparison of the methods
Subtitle
The demonstration runs over 600 lidar scans, no post-processing was involved
Author
Contributors
License
CC Attribution - ShareAlike 3.0 Germany:
You are free to use, adapt and copy, distribute and transmit the work or content in adapted or unchanged form for any legal purpose as long as the work is attributed to the author in the manner specified by the author or licensor and the work or content is shared also in adapted form only under the conditions of this
Identifiers
Publisher
Release Date
Language
Production Year2021
Production PlaceBergen, Norway

Content Metadata

Subject Area
Genre
Abstract
Development of an image processing method for wake meandering studies and its application on data sets from scanning wind lidar and large-eddy simulation. Wind Energy Science Wake meandering studies require knowledge of the instantaneous wake shape and its evolution. Scanning lidar data are used to identify the wake pattern behind offshore wind turbines but do not immediately reveal the wake shape. The precise detection of the wake shape and centerline helps to build models predicting wake behavior. The conventional Gaussian fit methods are reliable in the near-wake area but lose precision with the distance from the rotor and require good data resolution for an accurate fit. The thresholding methods usually imply a fixed value or manual selection of a threshold, which hinders the wake detection on a large data set. We propose an automated thresholding method for the wake shape and centerline detection, which is less dependent on the data resolution and can also be applied to the image data. We show that the method performs reasonably well on large-eddy simulation data and apply it to the data set containing lidar measurements of the two wakes. Along with the wake detection method, we use image processing statistics, such as entropy analysis, to filter and classify lidar scans. The image processing method is developed to reduce dependency on the supplementary reference data such as wind speed and direction. We show that the centerline found with the image processing is in a good agreement with the manually detected centerline and the Gaussian fit method. We also discuss a potential application of the method to separate the near and far wakes and to estimate the wake direction.
Keywords