We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Categorical structure of Coulomb branches of 4D N=2 gauge theories

Formal Metadata

Title
Categorical structure of Coulomb branches of 4D N=2 gauge theories
Title of Series
Number of Parts
12
Author
License
CC Attribution - NonCommercial - NoDerivatives 4.0 International:
You are free to use, copy, distribute and transmit the work or content in unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
Coulomb branches have recently been given a good mathematical footing thanks to work of Braverman-Finkelberg-Nakajima. We will discuss their categorical structure. For concreteness we focus on the massless case which leads us to the category of coherent sheaves on the affine Grassmannian (the so called coherent Satake category). This category is conjecturally governed by a cluster algebra structure. We will describe a solution to this conjecture in the case of general linear groups and discuss extensions of this result to more general Coulomb branches of 4D N=2 gauge theories. This is joint work with Harold Williams.