We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Uncertainty Quantification for Semi-Supervised Multi-class Classification in Ego-Motion Analysis of Body-Worn Videos

Formal Metadata

Title
Uncertainty Quantification for Semi-Supervised Multi-class Classification in Ego-Motion Analysis of Body-Worn Videos
Title of Series
Number of Parts
13
Author
License
CC Attribution - NonCommercial - NoDerivatives 4.0 International:
You are free to use, copy, distribute and transmit the work or content in unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
Applications such as police body-worn video cameras generate a huge amount of data, beyond what is humanly possible for analysts to review. Such problems are ripe for the development of semi-supervised learning algorithms, which, by definition, use a small amount of training data. We introduce an uncertainty quantification (UQ) method for graph-based semi-supervised multi-class classification problems. We not only predict the class label for each data point but also provide a confidence score for the prediction. We adopt a Bayesian approach and propose a graphical multi-class probit model together with an effective Gibbs sampling procedure. Furthermore, we propose a confidence measure for each data point that correlates with the classification performance. We use the empirical properties of the proposed confidence measure to guide the design of a human-in-the-loop system. The uncertainty quantification algorithm and the human-in-the-loop system are successfully applied to classification problems in image processing and ego-motion analysis of body-worn videos.