We tackle the reconstruction of discontinuous coefficients in a semilinear elliptic equation from the knowledge of the solution on the boundary of the planar bounded domain. The problem is motivated by an application in cardiac electrophysiology. We formulate a constraint minimization problem involving a quadratic mismatch functional enhanced with a phase field term which penalizes the perimeter. After computing the optimality conditions of the phase-field optimization problem and introducing a discrete finite element formulation, we propose an iterative algorithm and prove convergence properties. Several numerical results are reported, assessing the effectiveness and the robustness of the algorithm in identifying arbitrarily-shaped inclusions. (Joint work with E. Beretta and L. Ratti) |