We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

On the Analysis of the Ensemble Kalman Filter for Inverse Problems and the Incorporation of Constraints

Formal Metadata

Title
On the Analysis of the Ensemble Kalman Filter for Inverse Problems and the Incorporation of Constraints
Title of Series
Number of Parts
22
Author
License
CC Attribution - NonCommercial - NoDerivatives 4.0 International:
You are free to use, copy, distribute and transmit the work or content in unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
The Ensemble Kalman filter (EnKF) has had enormous impact on the applied sciences since its introduction in the 1990s by Evensen and coworkers. It is used for both data assimilation problems, where the objective is to estimate a partially observed time-evolving system, and inverse problems, where the objective is to estimate a (typically distributed) parameter appearing in a differential equation. In this talk we will focus on the identification of parameters through observations of the response of the system - the inverse problem. The EnKF can be adapted to this setting by introducing artificial dynamics. Despite documented success as a solver for such inverse problems, there is very little analysis of the algorithm. In this talk, we will discuss well-posedness and convergence results of the EnKF based on the continuous time scaling limits, which allow to derive estimates on the long-time behavior of the EnKF and, hence, provide insights into the convergence properties of the algorithm. This is joint work with Dirk Bloemker (U Augsburg), Andrew M. Stuart (Caltech), Philipp Wacker (FAU Erlangen-Nuernberg) and Simon Weissmann (U Mannheim).