This talk addresses the solution of inverse problems in imaging given an additional reference image. We combine a modification of the discrete geodesic path model of Berkels, Effland and Rumpf with a variational model, actually the L 2 -T V model, for image restoration. We prove that the space continuous model has a minimizer and propose a minimization procedure which alternates over the involved sequences of deformations and images. The minimization with respect to the image sequence exploits recent algorithms from convex analysis to minimize the L 2 -T V functional. For the numerical computation we apply a finite difference approach on staggered grids together with a multilevel strategy. We present proof-of-the-concept numerical results for sparse and limited angle computerized tomography as well as for superresolution demonstrating the power of the method. Further we apply the morphing approach for image colorization. |