We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Regularization of Inverse Problems via Metamorphosis along Geodesics in Image Spaces

Formal Metadata

Title
Regularization of Inverse Problems via Metamorphosis along Geodesics in Image Spaces
Alternative Title
Regularization of Inverse Problems via Time Discrete Geodesics in Image Spaces
Title of Series
Number of Parts
22
Author
Contributors
License
CC Attribution - NonCommercial - NoDerivatives 4.0 International:
You are free to use, copy, distribute and transmit the work or content in unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
This talk addresses the solution of inverse problems in imaging given an additional reference image. We combine a modification of the discrete geodesic path model of Berkels, Effland and Rumpf with a variational model, actually the L 2 -T V model, for image restoration. We prove that the space continuous model has a minimizer and propose a minimization procedure which alternates over the involved sequences of deformations and images. The minimization with respect to the image sequence exploits recent algorithms from convex analysis to minimize the L 2 -T V functional. For the numerical computation we apply a finite difference approach on staggered grids together with a multilevel strategy. We present proof-of-the-concept numerical results for sparse and limited angle computerized tomography as well as for superresolution demonstrating the power of the method. Further we apply the morphing approach for image colorization.