Diseases like cancer or arteriosclerosis often cause changes of tissue stiffness in the micrometer scale. Our work aims at developing a non-invasive method to quantitatively image these biomechanical changes and study the potential of the method for medical diagnostics. We focus on quantitative elastography combined with photoacoustic (PAT) and optical coherence tomography (OCT). The problem we deal with consists in estimating elastic material parameters from internal displacement data, which are evaluated from OCT-PAT recordered successive images of a sample. |