We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Small divisors and free vibrations in the n-vortex filament problem

Formal Metadata

Title
Small divisors and free vibrations in the n-vortex filament problem
Title of Series
Number of Parts
22
Author
License
CC Attribution - NonCommercial - NoDerivatives 4.0 International:
You are free to use, copy, distribute and transmit the work or content in unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
In this talk we discuss families of homographic standing waves appearing from n vortex filaments rotating uniformly at a central configuration. The solution of the filaments are time periodic with periodic boundary conditions, i.e. this is a small divisor problem for a Hamiltonian partial differential equation which requires techniques related to KAM theory. In this case the Nash-Moser method gives rise to a family of solutions over a Cantor set of parameters. On the other hand, we show that when the relation between temporal and spatial periods is fixed at certain rational numbers, the contraction mapping theorem gives existence of an infinite number of families of standing waves that bifurcate from these configurations.