We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Approximation theorems for the Schrodinger equation and vortex reconnection in quantum fluids.

00:00

Formal Metadata

Title
Approximation theorems for the Schrodinger equation and vortex reconnection in quantum fluids.
Title of Series
Number of Parts
22
Author
License
CC Attribution - NonCommercial - NoDerivatives 4.0 International:
You are free to use, copy, distribute and transmit the work or content in unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
The quantum vortices of a superfluid are described as nodal lines of a solution to the time-dependent Gross-Pitaevskii equation. Experiments and extensive numerical computations show that quantum vortices cross, each of them breaking into two parts and exchanging part of itself for part of the other. This phenomenon is known as quantum vortex reconnection, and usually leads to a change of topology of the quantum vortices. In this talk I will show that, given any initial and final congurations of quantum vortices (which do not need to be topologically equivalent) and any conceivable way of reconnecting them (that is, of transforming one into the other), there is a Schwartz initial datum whose associated solution is smooth and realizes this specific vortex reconnection scenario. Key for the proof of this result is a new global approximation theorem for the linear Schrodinger equation, and the construction of pseudo-Seifert surfaces in spacetime. This is based on joint work with Alberto Enciso.