We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Mean Field Games on Unbounded Networks and the Graphon MFG Equations

Formal Metadata

Title
Mean Field Games on Unbounded Networks and the Graphon MFG Equations
Alternative Title
Graphon Mean Field Games and the GMFG Equations
Title of Series
Number of Parts
19
Author
Contributors
License
CC Attribution - NonCommercial - NoDerivatives 4.0 International:
You are free to use, copy, distribute and transmit the work or content in unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
Very large networks linking dynamical agents are now ubiquitous and there is significant interest in their analysis, design and control. The emergence of the graphon theory of large networks and their infinite limits has recently enabled the formulation of a theory of the centralized control of dynamical systems distributed on asymptotically infinite networks [Gao and Caines, IEEE CDC 2017, 2018]. Furthermore, the study of the decentralized control of such systems has been initiated in [Caines and Huang, IEEE CDC 2018] where Graphon Mean Field Games (GMFG) and the GMFG equations are formulated for the analysis of non-cooperative dynamical games on unbounded networks. In this talk the GMFG framework will be first be presented followed by the basic existence and uniqueness results for the GMFG equations, together with an epsilon-Nash theorem relating the infinite population equilibria on infinite networks to that of finite population equilibria on finite networks.