We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Penrose tilings and Hurwitz theory of leaf spaces

Formal Metadata

Title
Penrose tilings and Hurwitz theory of leaf spaces
Title of Series
Number of Parts
12
Author
License
CC Attribution - NonCommercial - NoDerivatives 4.0 International:
You are free to use, copy, distribute and transmit the work or content in unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
A group acting on an elliptic curve must have order N = 1, 2, 3, 4, or 6. We call the quotient an elliptic orbifold. Certain branched covers of the order N elliptic orbifold are in bijection with tiled surfaces, and form a lattice in the moduli space of N-ic differentials on Riemann surfaces. The enumerative theory of these branched covers suggests a phantom "elliptic orbifold" for all integers N. I will discuss work-in-progress with Peter Smillie proposing a definition for the Hurwitz theory of this non-existent object, and attempts to relate it to quasi-crystals in the moduli space of quintic differentials and the enumeration of Penrose-tiled Riemann surfaces. From the minute 31:11 of video does not have audio.