We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Sylvester-Gallai Type Theorems for Quadratic Polynomials

00:00

Formal Metadata

Title
Sylvester-Gallai Type Theorems for Quadratic Polynomials
Title of Series
Number of Parts
12
Author
License
CC Attribution - NonCommercial - NoDerivatives 4.0 International:
You are free to use, copy, distribute and transmit the work or content in unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
We prove Sylvester-Gallai type theorems for quadratic polynomials. Specifically, we prove that if a finite collection Q, of irreducible polynomials of degree at most 2, satisfy that for every two polynomials Q1,Q2 ∈ Q there is a third polynomial Q3∈Q so that whenever Q1 and Q2 vanish then also Q3 vanishes, then the linear span of the polynomials in Q has dimension O(1). We also prove a colored version of the theorem: If three finite sets of quadratic polynomials satisfy that for every two polynomials from distinct sets there is a polynomial in the third set satisfying the same vanishing condition then all polynomials are contained in an O(1)-dimensional space. This answers affirmatively two conjectures of Gupta [Electronic Colloquium on Computational Complexity (ECCC), 21:130, 2014] that were raised in the context of solving certain depth-4 polynomial identities. To obtain our main theorems we prove a new result classifying the possible ways that a quadratic polynomial Q can vanish when two other quadratic polynomials vanish. Our proofs also require robust versions of a theorem of Edelstein and Kelly (that extends the Sylvester-Gallai theorem to colored sets).