We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Universality for Lozenge Tiling Local Statistics

Formale Metadaten

Titel
Universality for Lozenge Tiling Local Statistics
Serientitel
Anzahl der Teile
18
Autor
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 4.0 International:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
We consider uniformly random lozenge tilings of essentially arbitrary domains and show that the local statistics of this model around any point in the liquid region of its limit shape are given by the infinite-volume, translation-invariant, extremal Gibbs measure of the appropriate slope. In this talk, we outline a proof of this result, which proceeds by locally coupling a uniformly random lozenge tiling with a model of Bernoulli random walks conditioned to never intersect. Central to implementing this procedure is to establish a local law for the random tiling, which states that the associated height function is approximately linear on any mesoscopic scale.