We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Topological implications of Kähler-type symmetries for Hermitian and Almost Kähler manifolds

Formal Metadata

Title
Topological implications of Kähler-type symmetries for Hermitian and Almost Kähler manifolds
Title of Series
Number of Parts
18
Author
License
CC Attribution - NonCommercial - NoDerivatives 4.0 International:
You are free to use, copy, distribute and transmit the work or content in unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
The symmetries of the Hodge diamond of a Kähler manifold provide many non-trivial conditions on both the Hodge numbers and the Betti numbers of the underlying manifold. In this talk I will describe generalizations of these to the setting of Hermitian and almost Kähler manifolds. Both discussions involve zeroeth order terms that vanish in the Kähler case, and yield an interesting representation of sl(2) on a naturally defined subspace of the harmonic forms. I'll explain several topological corollaries involving Betti numbers and the fundamental group, which is joint work with Joana Cirici. The two discussions have some interesting and yet unexplained algebraic mirror-type symmetry between them, which may lead the participants to interesting questions for future research.