We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Left relatively convex subgroups

Formal Metadata

Title
Left relatively convex subgroups
Title of Series
Number of Parts
17
Author
License
CC Attribution - NonCommercial - NoDerivatives 4.0 International:
You are free to use, copy, distribute and transmit the work or content in unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
Let G be a group and H be a subgroup of G. We say that H is left relatively convex in G if the left G-set G/H has at least one G-invariant order. When G is left orderable, this holds if and only if H is convex in G under some left ordering of G. We give a criterion for H to be left relatively convex in G that generalizes a well known criterion of Burns and Hale. We then use this criterion to show that all maximal cyclic subgroups are left relatively convex in free groups, in right-angled Artin groups, and in surface groups that are not the Klein-bottle group. The free-group case extends a result of Duncan and Howie. We show that if G is left orderable, then each free factor of G is left relatively convex in G. More generally, for any graph of groups, if each edge group is left relatively convex in each of its vertex groups, then each vertex group is left relatively convex in the fundamental group; this generalizes a result of Chiswell. Finally, we show that all maximal cyclic subgroups in locally residually torsion-free nilpotent groups are left relatively convex. This is a joint work with Yago Antolin and Warren Dicks.