We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Higher-Order Spreadsheets with Spilled Arrays

Formal Metadata

Title
Higher-Order Spreadsheets with Spilled Arrays
Title of Series
Number of Parts
13
Author
Contributors
License
CC Attribution 3.0 Germany:
You are free to use, adapt and copy, distribute and transmit the work or content in adapted or unchanged form for any legal purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
We develop a theory for two recently-proposed spreadsheet mechanisms: gridlets allow for abstraction and reuse in spreadsheets, and build on spilled arrays, where an array value spills out of one cell into nearby cells. We present the first formal calculus of spreadsheets with spilled arrays. Since spilled arrays may collide, the semantics of spilling is an iterative process to determine which arrays spill successfully and which do not. Our first theorem is that this process converges deterministically. To model gridlets, we propose the grid calculus, a higher-order extension of our calculus of spilled arrays with primitives to treat spreadsheets as values. We define a semantics of gridlets as formulas in the grid calculus. Our second theorem shows the correctness of a remarkably direct encoding of the Abadi and Cardelli object calculus into the grid calculus. This result is the first rigorous analogy between spreadsheets and objects; it substantiates the intuition that gridlets are an object-oriented counterpart to functional programming extensions to spreadsheets, such as sheet-defined functions.