We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Fast reaction limit with nonmonotone reaction function

Formal Metadata

Title
Fast reaction limit with nonmonotone reaction function
Title of Series
Number of Parts
39
Author
License
CC Attribution - NonCommercial - NoDerivatives 4.0 International:
You are free to use, copy, distribute and transmit the work or content in unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
We analyse fast reaction limit in the reaction-diffusion system \begin{align*} \partial_t u^{\varepsilon} &= \frac{v^{\varepsilon} - F(u^{\varepsilon})}{\varepsilon}, \\ \partial_t v^{\varepsilon} &= \Delta v^{\varepsilon} + \frac{F(u^{\varepsilon}) - v^{\varepsilon}}{\varepsilon}, \end{align*} with nonmonotone reaction function $F$. As speed of reaction tends to infinity, the concentration of non-diffusing component $u^{\varepsilon}$ exhibits fast oscillations. We identify precisely its Young measure which, as a by-product, proves strong convergence of the diffusing component $v^{\varepsilon}$, a result that is not obvious from a priori estimates. Our work is based on analysis of regularization for forward-backward parabolic equations by Plotnikov [2]. We rewrite his ideas in terms of kinetic functions which clarifies the method, brings new insights, relaxes assumptions on model functions and provides a weak formulation for the evolution of the Young measure.
Keywords