We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Analysis of an unsteady flow of an incompressible heat-conductive rate-type viscoelastic fluid with stress diffusion

Formal Metadata

Title
Analysis of an unsteady flow of an incompressible heat-conductive rate-type viscoelastic fluid with stress diffusion
Title of Series
Number of Parts
39
Author
License
CC Attribution - NonCommercial - NoDerivatives 4.0 International:
You are free to use, copy, distribute and transmit the work or content in unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
Viscoelastic fluids often exhibit high sensitivity of material properties on temperature changes. Nevertheless, the available mathematical theory for these fluids concerns only models that are isothermal or that are simplified in other ways. For example, one can find existence theories in 2D, for small data, with only the corotational derivative, with only the spherical part of the elasticity tensor etc. In the talk, we introduce an existence theory without any of these assumptions and treat a rather general class of Johnson-Segalman-like models including full thermal evolution. To avoid the well-known ill-posedness of the corresponding PDE system, we modify the ``elastic part'' of the dissipation of the fluid far from the equilibrium, while preserving thermodynamic compatibility of the model. This way, we are able to prove the existence of a global-in-time weak solution for any initial datum with finite total energy and entropy.
Keywords