We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

On evolutionary problems with a-priori bounded gradients

Formal Metadata

Title
On evolutionary problems with a-priori bounded gradients
Title of Series
Number of Parts
39
Author
License
CC Attribution - NonCommercial - NoDerivatives 4.0 International:
You are free to use, copy, distribute and transmit the work or content in unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
We study a nonlinear evolutionary partial differential equation that can be viewed as a generalization of the heat equation where the temperature gradient is a~priori bounded but the heat flux provides merely $L^1$-coercivity. We use the concept of renormalized solutions and higher differentiability techniques to prove existence and uniqueness of weak solution with $L^1$-integrable flux for all values of a positive model parameter $a$. If this parameter is smaller than $2/(d+1)$, where $d$ denotes the spatial dimension, we obtain higher integrability of the flux. We also relate the studied problem to problems in fluid mechanics.
Keywords