We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Thermodynamically consistent derivation of a micro-macro model for dilute polymeric fluids

Formal Metadata

Title
Thermodynamically consistent derivation of a micro-macro model for dilute polymeric fluids
Title of Series
Number of Parts
39
Author
License
CC Attribution - NonCommercial - NoDerivatives 4.0 International:
You are free to use, copy, distribute and transmit the work or content in unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
The rheology of complex fluids such as polymeric liquids is highly non-Newtonian in nature and manifests itself as an extra stress component in the Cauchy stress tensor. At the purely macroscopic level, the extra stress tensor is linked to the velocity field through, say, a partial differential equation. An alternative approach consists in finding an expression for the macroscopic extra stress tensor in terms of the microscopic dynamics of the polymer chains. We present a thermodynamically based approach to the design of a class of such micro-macro models for dilute polymeric liquids and show that the thermodynamic background of the model naturally yields stability of the steady state when the fluid occupies an isolated vessel.
Keywords