We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Mv-strong uniqueness for density dependent, incompressible, non-Newtonian fluids

Formal Metadata

Title
Mv-strong uniqueness for density dependent, incompressible, non-Newtonian fluids
Title of Series
Number of Parts
39
Author
License
CC Attribution - NonCommercial - NoDerivatives 4.0 International:
You are free to use, copy, distribute and transmit the work or content in unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
We analyse the system of the form \begin{align*} {\partial}_t{\rho} +{\rm div \,}_x(\rho u) = 0\\ {\partial}_t(\rho u) +{\rm div \,}_x(\rho u\otimes u) + \nabla_x p = {\rm div \,}_x {\mathbb{S}}\label{secondequation}\\ {\rm div \,}_x(u) = 0 \end{align*} where $\rho$ is the mass density, $u$ denotes velocity field, ${\mathbb{S}}$ the stress tensor and $p$ is the pressure. We are interested in the measure-valued solutions to those equations and prove the mv-strong uniqueness property. This work bases its assumptions on the recent paper by Abbatiello and Feireisl [1], but differs from it in density dependency. Surprisingly the solutions are not defined by the Young measures, but by the similar tool to the so-called defect measure. BIBLIOGRAPHY [1] A. Abbatiello and E. Feireisl. On a class of generalized solutions to equations describing incompressible viscous fluids. Ann. Mat. Pura Appl. (4), 199(3):1183â 1195, 2020.
Keywords