We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Equilibria and regularity in Mean Field Games with density penalization or constraints

Formal Metadata

Title
Equilibria and regularity in Mean Field Games with density penalization or constraints
Title of Series
Number of Parts
5
Author
License
CC Attribution - NonCommercial - NoDerivatives 2.0 Generic:
You are free to use, copy, distribute and transmit the work or content in unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
In the talk, I will first present a typical Mean Field Game problem, as in the theory introduced by Lasry-Lions and Huang-Caines-Malhamé, concentrating on the case where the game has a variational structure (i.e., the equilibrium can be found by minimizing a global energy) and is purely deterministic (no diffusion, no stochastic control). From the game-theoretical point of view, we look for a Nash equilibrium for a non-atomic congestion game, involving a penalization on the density of the players at each point. I will explain why regularity questions are natural and useful for rigorously proving that minimizers are equilibria, making the connection with what has been done for the incompressible Euler equation in the Brenier’s variational formalism. I will also introduce a variant where the penalization on the density is replaced by a constraint, which lets a price (which is a pressure, in the incompressible fluid language) appears on saturated regions. Then, I will sketch some regularity results which apply to these settings. The content of the talk mainly comes from joint works with A. Mészáros, P. Cardaliaguet, and H. Lavenant.
Keywords