We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

A Grassmannian technique and the Kobayashi Conjecture

Formal Metadata

Title
A Grassmannian technique and the Kobayashi Conjecture
Title of Series
Part Number
19
Number of Parts
29
Author
Contributors
License
CC Attribution - NonCommercial - NoDerivatives 2.0 Generic:
You are free to use, copy, distribute and transmit the work or content in unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
An entire curve on a complex variety is a holomorphic map from the complex numbers to the variety. We discuss two well-known conjectures on entire curves on very general high-degree hypersurfaces $X$ in $\mathbb{P}^n$: the Green–Griffiths–Lang Conjecture, which says that the entire curves lie in a proper subvariety of $X$, and the Kobayashi Conjecture, which says that X contains no entire curves. We prove that (a slightly strengthened version of) the Green–Griffiths–Lang Conjecture in dimension $2n$ implies the Kobayashi Conjecture in dimension $n$. The technique has already led to improved bounds for the Kobayashi Conjecture.
Keywords