We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Diophantine exponents, best approximation and badly approximable numbers

00:00

Formal Metadata

Title
Diophantine exponents, best approximation and badly approximable numbers
Title of Series
Number of Parts
28
Author
Contributors
License
CC Attribution - NonCommercial - NoDerivatives 2.0 Generic:
You are free to use, copy, distribute and transmit the work or content in unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
We will discuss recent progress in analysis of uniform and ordinary Diophantine exponents $\hat\omega $ and $\omega$ for linear Diophantine approximation as well as some applications of the related methods. In particular, we give a new criterion for badly approximable vectors in $\mathbb{R}^{d}$ the behavior of the best approximation vectors in the sense of simultaneous approximation and in the sense of linear form. It turned out that compared to the one-dimensional case our criterion is rather unusual. We apply this criterion to the analysis of Dirichlet spectrum for simultaneous Diophantine approximation.
Keywords