We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Supporting an Expert-centric Process of New Product Introduction With Statistical Machine Learning

Formal Metadata

Title
Supporting an Expert-centric Process of New Product Introduction With Statistical Machine Learning
Title of Series
Number of Parts
30
Author
License
CC Attribution 4.0 International:
You are free to use, adapt and copy, distribute and transmit the work or content in adapted or unchanged form for any legal purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
Industries that sell products with short-term or seasonal life cycles must regularly introduce new products. Forecasting the demand for New Product Introduction (NPI) can be challenging due to the fluctuations of many factors such as trend, seasonality, or other external and unpredictable phenomena (e.g., COVID-19 pandemic). Traditionally, NPI is an expertcentric process. This paper presents a study on automating the forecast of NPI demands using statistical Machine Learning (namely, Gradient Boosting and XGBoost). We show how to overcome shortcomings of the traditional data preparation that underpins the manual process. Moreover, we illustrate the role of cross-validation techniques for the hyper-parameter tuning and the validation of the models. Finally, we provide empirical evidence that statistical Machine Learning can forecast NPI demand better than experts.
Keywords