We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Prescriptive System for Reconfigurable Manufacturing Systems Considering Variable Demand and Production Rates

Formal Metadata

Title
Prescriptive System for Reconfigurable Manufacturing Systems Considering Variable Demand and Production Rates
Title of Series
Number of Parts
12
Author
Contributors
License
CC Attribution - ShareAlike 4.0 International:
You are free to use, adapt and copy, distribute and transmit the work or content in adapted or unchanged form for any legal purpose as long as the work is attributed to the author in the manner specified by the author or licensor and the work or content is shared also in adapted form only under the conditions of this
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
The current market is dynamic and, consequently, industries need to be able to meet unpredictable market changes in order to remain competitive. To address the change in paradigm, from mass production to mass customization, manufacturing flexibility is key. Moreover, current digitalization of the industry opens opportunities regarding real-time decision support systems allowing the companies to make strategic decisions, and gain competitive advantage and business value. The main focus of this paper is to demonstrate a proof of concept Prescriptive System applied to Reconfigurable Manufacturing Systems. This system is capable of suggesting sequences of machines throughputs that best balance productivity, and the impact of the proposed throughput in the degradation of the equipment. The proposed solution is mainly composed of two modules, namely manufacturing environment simulation and optimizer. The simulation module is modeled based on Directed Acyclic Graphs and the second one on Genetic Algorithms. The results were evaluated against two metrics, variation of pieces referred as differential and availability of the system. Analysis of the results show that productivity in all testing scenarios improves, and in some instances, availability slightly increases showing promising indicators. However, further research should be conducted to be able to generalize the obtained results.