We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Tropical convexity, mean payoff games and nonarchimedean convex programming

Formal Metadata

Title
Tropical convexity, mean payoff games and nonarchimedean convex programming
Alternative Title
Tropical Convexity, Mean Payoff Games and Nonarchimedean Convex Programming
Title of Series
Number of Parts
15
Author
Contributors
License
CC Attribution 3.0 Unported:
You are free to use, adapt and copy, distribute and transmit the work or content in adapted or unchanged form for any legal purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
Convex sets can be defined over ordered fields with a non-archimedean valuation. Then, tropical convex sets arise as images by the valuation of non-archimedean convex sets. The tropicalization of polyhedra and spectrahedra are of special in- terest, since they can be described in terms of deterministic and stochastic games with mean payoff. In that way, one gets a correspondence between classes of zero- sum games, with an unsettled complexity, and classes of semilagebraic convex op- timization problems over non-archimedean fields. We shall discuss applications of this correspondence, including a counter example concerning the complexity of interior point methods, and the fact that non-archimedean spectrahedra have precisely the same images by the valuation as convex semi-algebraic sets. This is based on works with Allamigeon, Benchimol, Joswig and Skomra.